Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.898
Filtrar
1.
Planta ; 259(5): 121, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38615288

RESUMEN

MAIN CONCLUSION: Upon systemic S. indica colonization in split-root system cyst and root-knot nematodes benefit from endophyte-triggered carbon allocation and altered defense responses what significantly facilitates their development in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with different plants including Arabidopsis thaliana. It enhances host's growth and resistance to different abiotic and biotic stresses such as infestation by the cyst nematode Heterodera schachtii (CN). In this work, we show that S. indica also triggers similar direct reduction in development of the root-knot nematode Meloidogyne javanica (RKN) in A. thaliana. Further, to mimick the natural situation occurring frequently in soil where roots are unequally colonized by endophytes we used an in vitro split-root system with one half of A. thaliana root inoculated with S. indica and the other half infected with CN or RKN, respectively. Interestingly, in contrast to direct effects, systemic effects led to an increase in number of both nematodes. To elucidate this phenomenon, we focused on sugar metabolism and defense responses in systemic non-colonized roots of plants colonized by S. indica. We analyzed the expression of several SUSs and INVs as well as defense-related genes and measured sugar pools. The results show a significant downregulation of PDF1.2 as well as slightly increased sucrose levels in the non-colonized half of the root in three-chamber dish. Thus, we speculate that, in contrast to direct effects, both nematode species benefit from endophyte-triggered carbon allocation and altered defense responses in the systemic part of the root, which promotes their development. With this work, we highlight the complexity of this multilayered tripartite relationship and deliver new insights into sugar metabolism and plant defense responses during S. indica-nematode-plant interaction.


Asunto(s)
Arabidopsis , Basidiomycota , Quistes , Tylenchoidea , Animales , Endófitos , Carbono , Azúcares
2.
Theor Appl Genet ; 137(5): 106, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622441

RESUMEN

KEY MESSAGE: A new resistance locus acting against the potato cyst nematode Globodera pallida was mapped to chromosome VI in the diploid wild potato species Solanum spegazzinii CPC 7195. The potato cyst nematodes (PCN) Globodera pallida and Globodera rostochiensis are economically important potato pests in almost all regions where potato is grown. One important management strategy involves deployment through introgression breeding into modern cultivars of new sources of naturally occurring resistance from wild potato species. We describe a new source of resistance to G. pallida from wild potato germplasm. The diploid species Solanum spegazzinii Bitter accession CPC 7195 shows resistance to G. pallida pathotypes Pa1 and Pa2/3. A cross and first backcross of S. spegazzinii with Solanum tuberosum Group Phureja cultivar Mayan Gold were performed, and the level of resistance to G. pallida Pa2/3 was determined in progeny clones. Bulk-segregant analysis (BSA) using generic mapping enrichment sequencing (GenSeq) and genotyping-by-sequencing were performed to identify single-nucleotide polymorphisms (SNPs) that are genetically linked to the resistance, using S. tuberosum Group Phureja clone DM1-3 516 R44 as a reference genome. These SNPs were converted into allele-specific PCR assays, and the resistance was mapped to an interval of roughly 118 kb on chromosome VI. This newly identified resistance, which we call Gpa VIlspg, can be used in future efforts to produce modern cultivars with enhanced and broad-spectrum resistances to the major pests and pathogens of potato.


Asunto(s)
Solanum tuberosum , Solanum , Tylenchoidea , Animales , Solanum tuberosum/genética , Solanum/genética , Enfermedades de las Plantas/genética , Fitomejoramiento
3.
Appl Microbiol Biotechnol ; 108(1): 298, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607493

RESUMEN

Radopholus similis is a destructive, migratory, and endophytoparasitic nematode. It has two morphologically indistinguishable pathotypes (or physiological races): banana and citrus pathotypes. At present, the only reliable method to differentiate the two pathotypes is testing the infestation and parasitism of nematodes on Citrus spp. via inoculation. However, differences in inoculation methods and conditions adopted by different researchers complicate obtaining consistent results. In this study, the parasitism and pathogenicity of 10 R. similis populations on rough lemon (Citrus limon) seedlings and the tropism and invasion of rough lemon roots were tested. It revealed that populations SWK, GJ, FZ, GZ, DBSR, and YJ were citrus pathotypes, which showed parasitism and pathogenicity on rough lemon and could invade rough lemon roots, whereas populations XIN, ML, HN6, and HL were banana pathotypes, having no parasitism and pathogenicity on rough lemon and they did not invade the rough lemon roots. Four pectate lyase genes (Rs-pel-2, Rs-pel-3, Rs-pel-4, and Rs-pel-5) belonging to the Class III family from these populations were amplified and analysed. The gene Rs-pel-3 could be amplified from six citrus pathotype populations and was stably expressed in the four developmental stages of the nematode, whereas it could not be amplified from the four banana pathotypes. Rs-pel-3 expression may be related to the parasitism and pathogenicity of R. similis on rough lemon. Hence, it can be used as a molecular marker to distinguish between banana and citrus pathotypes and as a target gene for the molecular identification of these two pathotypes. KEY POINTS: • Four pectate lyase genes (Rs-pels) from Radopholus similis were cloned and analysed. • The expression of Rs-pels is different in two pathotypes of Radopholus similis. • A molecular identification method for two pathotypes of Radopholus similis using pectate lyase gene Rs-pel-3 as the target gene was established.


Asunto(s)
Tylenchoidea , Animales , Tylenchoidea/genética , Raíces de Plantas , Polisacárido Liasas/genética , Plantones
4.
Methods Mol Biol ; 2756: 103-169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427294

RESUMEN

The use of nonhost, tolerant, or resistant plants, to manage plant parasitic nematodes (PPNs), is an appealing, economic, and environmentally friendly agronomic practice, which is effective when precise information on the identification of PPN species and their virulence to target host crops is available. This chapter describes suggested protocols to evaluate the reaction of the most important crops and fruit trees to infestation by the most damaging PPN with sedentary endoparasitic habits, with the aim of assessing resistance and tolerance traits, sources of resistance in progenies from breeding programs, the reaction to nematodes of newly released cultivars, and the virulence of the most noxious PPNs. These protocols consist of classical screening techniques not involving biochemical and molecular analyses. PPN species and genera considered in this chapter include (i) the most important species of root-knot nematodes Meloidogyne spp., including also M. chitwoodi, M. enterolobii, and M. graminicola, and (ii) the cyst-forming nematodes of the genera Globodera and Heterodera, such as the potato cyst nematodes (PCNs) Globodera rostochiensis and G. pallida, and also Heterodera avenae group, H. ciceri, H. glycines, and H. schachtii. Schemes are given to identify virulence groups for most of these nematodes.


Asunto(s)
Fitomejoramiento , Tylenchoidea , Animales , Virulencia , Productos Agrícolas
5.
Methods Mol Biol ; 2756: 71-101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427293

RESUMEN

Once a nematode has been identified, to conduct studies for screening programs or pathogenicity tests, it is necessary a supply of large numbers of nematodes from field crops or reproduced and stored to be used in periods of the year when they are not available from fields. Therefore, nematodes must be reared in greenhouse or under in vitro conditions and stored for future needs. In this chapter, suggestions are given on how to obtain nematodes from fields and reproduce most of them on host plants in greenhouse (mainly Meloidogyne spp. and Globodera spp.) or in vitro. Reproductions in vitro include: On suitable callus of host plants (Pratylenchus spp., Ditylenchus spp.) On fungal cultures mainly of Botrytis cinerea or Alternaria spp. for Aphelenchoides spp. and other aphelenchids, including Bursaphelenchus xylophilus. On carrot disks for Pratylenchus spp. and Ditylenchus spp. Other specific media, such as garlic, potato, and sweet potato for D. destructor, and cocoyam disks for Radopholus similis. Guidelines are also given to store different nematodes for rather long times, including in vitro methods and in infected seeds, hay, and other plant parts. No information is given on how to prepare and store fixed materials.


Asunto(s)
Tylenchida , Tylenchoidea , Animales , Plantas
6.
Methods Mol Biol ; 2756: 227-245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427296

RESUMEN

Among plant-parasitic nematodes, root-knot nematodes (RKN), Meloidogyne spp., are the most important parasite infecting economically important crops globally and causing severe losses in crop production. The use of efficient nematode control methods against these parasites depends upon their correct detection in roots and soil samples. Currently, the use of integrated identification methods, including biochemical, molecular, and morphological-based characters, is preferred. But the techniques using morphology and phylogenetic analysis are time-consuming and not suitable for routine analysis. They have only been used for studies of cryptic species, which were identified using integrative taxonomy. Here we describe the enzymatic and molecular-based methods that have successfully been used in Brazil for more than 25 years in the Nematology Lab at Embrapa Genetic Resources and Biotechnology for routine analysis. This technique is a combination of isozyme esterase profiling and molecular markers, with the aim of having a rapid and correct diagnosis of Meloidogyne spp. populations from field and greenhouse.


Asunto(s)
Raíces de Plantas , Tylenchoidea , Animales , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Tylenchoidea/genética , Brasil
7.
Methods Mol Biol ; 2756: 271-289, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427299

RESUMEN

Plant-parasitic nematodes have enormous economic and social impacts. The majority of plant-parasitic nematodes are soil dwelling and feed on plant roots. Exudates from actively growing roots initiate hatch of some nematode species, thus ensuring infective juveniles emerge in close proximity to host plant roots. Several gradients of volatile and non-volatile compounds are established around plant roots, at least some of which are used by nematodes to orientate toward the roots. Plant-parasitic nematodes are microscopic in size (less than 1 mm in length and between 15 and 20 µm in diameter), so investigations into behavior are challenging. Various in vitro techniques have been used to evaluate the effects of root exudates. The techniques can also be used to evaluate the comparative attractiveness of different plants or cultivars of the same plant species. This chapter describes some examples of different types of basic in vitro assays.


Asunto(s)
Nematodos , Tylenchida , Tylenchoidea , Animales , Raíces de Plantas/parasitología , Exudados y Transudados , Suelo
8.
Methods Mol Biol ; 2756: 171-226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427295

RESUMEN

This chapter is a continuation of Chap. 3 . Initially, protocols for the screening of several host plants to their major migratory and semi-endoparasitic nematodes are presented. Then the problems related to assessment of tolerance to these nematodes are described, followed by the determination of nematode races. The main plant-nematode interactions considered are annuals and perennials to Pratylenchus spp.; banana to Radopholus similis; potato to Nacobbus aberrans; several crop plants, including onion, alfalfa, clovers, and potato, to Ditylenchus dipsaci; broad bean to D. giga; potato and sweet potato to D. destructor; peanut to D. africanus; rice to D. angustus and Aphelenchoides besseyi; wheat to Anguina tritici; different plants to Rotylenchulus reniformis; and citrus to Tylenchulus semipenetrans. Schemes to identify races or biotypes are only presented for D. dipsaci and T. semipenetrans. The occurrence of pathotypes in other nematode species is also discussed. Finally, comments are made on ectoparasitic nematodes.


Asunto(s)
Tylenchida , Tylenchoidea , Animales , Virulencia , Plantas/parasitología
9.
Methods Mol Biol ; 2756: 317-326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427302

RESUMEN

Meloidogyne species, as infective second-stage juveniles (J2s) larvae, are parasites able to attack host of relevant agronomic interest such as tomato plants. The identification of gene expression markers, useful to investigate the levels of root-knot nematode infection in the roots, is a fundamental tool in plant-pathogen interaction. The laboratory methods for analyzing the differential expression of pathogenesis-related (PR) genes constitute powerful tools for detecting the induced systemic acquired resistance defense response to M. incognita in infected plants and can be extended to all pathogen infection markers to obtain an early and sustainable control.


Asunto(s)
Solanum lycopersicum , Tylenchoidea , Animales , Solanum lycopersicum/genética , Tylenchoidea/genética , Raíces de Plantas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Susceptibilidad a Enfermedades/metabolismo
10.
Methods Mol Biol ; 2756: 327-341, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427303

RESUMEN

Epigenetic modifications including miRNA regulation, DNA methylation, and histone modifications play fundamental roles in establishing the interactions between host plants and parasitic nematodes. Over the past decade, an increasing number of studies revealed the key functions of various components of the plant epigenome in the regulation of gene expression and shaping plant responses to nematode infection. In this chapter, we provide a conceptual framework for methods used to investigate epigenetic regulation during plant-nematode interactions. We focus specifically on current and emerging methods used to study miRNA regulation and function. We also highlight various methods and analytical tools used to profile DNA methylation patterns and histone modification marks at the genome level. Our intention is simply to explain the advantages of various methods and how to overcome some limitations. With rapid development of single-cell sequencing technology and genome editing, advanced and new methodologies are expected to emerge in the near future to further improve our understanding of epigenetic regulation and function during plant-nematode interactions.


Asunto(s)
MicroARNs , Tylenchoidea , Animales , Epigénesis Genética , Enfermedades de las Plantas/genética , Plantas/genética , Plantas/parasitología , Metilación de ADN , MicroARNs/genética , Tylenchoidea/fisiología
11.
Mycorrhiza ; 34(1-2): 145-158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38441668

RESUMEN

Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance and/or resistance to pests such as the root-knot nematode Meloidogyne incognita. However, the ameliorative effects may depend on AMF species. The aim of this work was therefore to evaluate whether four AMF species differentially affect plant performance in response to M. incognita infection. Tomato plants grown in greenhouse conditions were inoculated with four different AMF isolates (Claroideoglomus claroideum, Funneliformis mosseae, Gigaspora margarita, and Rhizophagus intraradices) and infected with 100 second stage juveniles of M. incognita at two different times: simultaneously or 2 weeks after the inoculation with AMF. After 60 days, the number of galls, egg masses, and reproduction factor of the nematodes were assessed along with plant biomass, phosphorus (P), and nitrogen concentrations in roots and shoots and root colonization by AMF. Only the simultaneous nematode inoculation without AMF caused a large reduction in plant shoot biomass, while all AMF species were able to ameliorate this effect and improve plant P uptake. The AMF isolates responded differently to the interaction with nematodes, either increasing the frequency of vesicles (C. claroideum) or reducing the number of arbuscules (F. mosseae and Gi. margarita). AMF inoculation did not decrease galls; however, it reduced the number of egg masses per gall in nematode simultaneous inoculation, except for C. claroideum. This work shows the importance of biotic stress alleviation associated with an improvement in P uptake and mediated by four different AMF species, irrespective of their fungal root colonization levels and specific interactions with the parasite.


Asunto(s)
Glomeromycota , Micorrizas , Solanum lycopersicum , Tylenchoidea , Animales , Micorrizas/fisiología , Raíces de Plantas/microbiología , Glomeromycota/fisiología , Plantas
12.
Arch Microbiol ; 206(4): 160, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483595

RESUMEN

Root-knot nematodes (RKN) are one of the most harmful soil-borne plant pathogens in the world. Actinobacteria are known phytopathogen control agents. The aim of this study was to select soil actinobacteria with control potential against the RKN (Meloidogyne javanica) in tomato plants and to determine mechanisms of action. Ten isolates were tested and a significant reduction was observed in the number of M. javanica eggs, and galls 46 days after infestation with the nematode. The results could be explained by the combination of different mechanisms including parasitism and induction of plant defense response. The M. javanica eggs were parasited by all isolates tested. Some isolates reduced the penetration of juveniles into the roots. Other isolates using the split-root method were able to induce systemic defenses in tomato plants. The 4L isolate was selected for analysis of the expression of the plant defense genes TomLoxA, ACCO, PR1, and RBOH1. In plants treated with 4L isolate and M. javanica, there was a significant increase in the number of TomLoxA and ACCO gene transcripts. In plants treated only with M. javanica, only the expression of the RBOH1 and PR1 genes was induced in the first hours after infection. The isolates were identified using 16S rRNA gene sequencing as Streptomyces sp. (1A, 3F, 4L, 6O, 8S, 9T, and 10U), Kribbella sp. (5N), Kitasatospora sp. (2AE), and Lentzea sp. (7P). The efficacy of isolates from the Kitasatospora, Kribbella, and Lentzea genera was reported for the first time, and the efficacy of Streptomyces genus isolates for controlling M. javanica was confirmed. All the isolates tested in this study were efficient against RKN. This study provides the opportunity to investigate bacterial genera that have not yet been explored in the control of M. javanica in tomatoes and other crops.


Asunto(s)
Actinobacteria , Actinomycetales , Solanum lycopersicum , Tylenchoidea , Animales , Enfermedades de las Plantas/prevención & control , Tylenchoidea/genética , Actinobacteria/genética , ARN Ribosómico 16S/genética , Bacterias/genética , Actinomycetales/genética , Suelo
13.
J Agric Food Chem ; 72(13): 6998-7009, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38507729

RESUMEN

Chemical exploration for two isolates of the recently described ascomycete species Polyphilus sieberi, derived from the eggs of the plant parasitic nematode Heterodera filipjevi, afforded the identification of many compounds that belong to various metabolite families: two previously undescribed chlorinated cyclotetrapeptides, omnipolyphilins A (1) and B (2), one new pyranonaphthoquinone, ventiloquinone P (3), a 6,6'-binaphto-α-pyranone dimer, talaroderxine D (4) in addition to nine known metabolites (5-13) were isolated from this biocontrol candidate. All isolated compounds were characterized by comprehensive 1D, 2D NMR, and HR-ESI-MS analyses. The absolute configurations of the cyclotetrapeptides were determined by a combination of advanced Marfey's method, ROE correlation aided by conformational analysis, and TDDFT-ECD calculations, while ECD calculations, Mosher's method, and experimental ECD spectra were used for ventiloquinone P (3) and talaroderxine D (4). Among the isolated compounds, talaroderxine D (4) showed potent antimicrobial activities against Bacillus subtilis and Staphylococcus aureus with MIC values of 2.1 and 8.3 µg mL-1, respectively. Additionally, promising inhibitory effects on talaroderxine D (4) against the formation of S. aureus biofilms were observed up to a concentration of 0.25 µg mL-1. Moreover, ophiocordylongiiside A (10) showed activity against the free-living nematode Caenorhabditis elegans.


Asunto(s)
Ascomicetos , Tylenchoidea , Humanos , Animales , Staphylococcus aureus , Bacillus subtilis , Estructura Molecular
14.
Sci Rep ; 14(1): 7253, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538666

RESUMEN

Due to the highly conserved structure, animal mitochondrial genome (mtDNA) is widely used in classification, evolution, phylogeny, population genetic structure and other fields. We reported on the five circle multipartite mtDNAs of a newly described species of Globodera, Globodera vulgaris (Gv) from potatoes in China. The results showed that the mtDNA of Gv was obtained through second- and third-generation sequencing, with a total length of 42,995 bp. It contained 12 protein-coding genes, two rRNA genes and 17 tRNA genes, which were distributed in different subgenomic circles. Comparison of the differences in mtDNA among Gv, G. rostochiensis, G. pallida and G. ellingtonae showed that the size and arrangement of the genes in the mtDNA of the genus Globodera were variable and not conserved. The codon usage bias of the mitochondrial protein-coding gene of Gv showed that Gv might have originated from locally and more primitive group of existing Globodera. Based on the cytochrome c oxidase subunits I genes (COX1) and the nicotinamide adenine dinucleotide dehydrogenase subunits I genes (ND1), and the results showed that Gv was clustered with Globodera spp. according to the COX1 and ND1 in scmtDNA-V, while Gv was clustered with Meloidogyne spp. according to ND1 in scmtDNA-III. The results of this study provided a new basis for understanding the multipartite structure of mtDNA as a phylogenetic and taxonomic feature of the genus Globodera. The number of subgenomic circles is a diagnostic feature of species and the arrangement order and size of mitochondrial protein-coding genes also have important application value in species identification within the genus.


Asunto(s)
Genoma Mitocondrial , Tylenchoidea , Animales , Genoma Mitocondrial/genética , Filogenia , Tylenchoidea/genética , ADN Mitocondrial/genética , Proteínas Mitocondriales/genética
15.
J Agric Food Chem ; 72(11): 5585-5594, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38442026

RESUMEN

To find novel nematicides, we screened the nematicidal activity of compounds in our laboratory compound library. Interestingly, the compound N-((1R,2R)-2-(2-fluoro-4-(trifluoromethyl)phenyl)cyclopropyl)-2-(trifluoromethyl)benzamide (W3) showed a broad spectrum and excellent nematicidal activity. The LC50 values of compound W3 against second-stage juveniles of Bursaphelenchus xylophilus (B. xylophilus), Aphelenchoides besseyi, and Ditylenchus destructor are 1.30, 1.63, and 0.72 mg/L, respectively. Nematicidal activities of compound W3 against second-stage juveniles of Meloidogyne incognita were 87.66% at 100 mg/L. Meanwhile, compound W3 can not only observably inhibit the feeding, reproduction, and egg hatching of B. xylophilus but can also effectively promote the oxidative stress adverse reactions of nematodes and cause intestinal damage. Compound W3 can promote the production of MDA and inhibit the activities of defense enzymes SOD and GST in B. xylophilus. Compound W3 can affect the transcription of genes involved in regulating the tricarboxylic acid cycle in nematodes, resulting in weakened nematode respiration and reduced nematode activity and even death. In addition, compound W3 had good inhibitory activity against five pathogenic fungi. Among them, the EC50 of compound W3 against Fusarium graminearum was 8.4 mg/L. In the future, we will devote ourselves to the toxicological and structural optimization research of the candidate nematicide W3.


Asunto(s)
Tylenchida , Tylenchoidea , Animales , Amidas/farmacología , Antinematodos/farmacología , Antinematodos/química , Reproducción
16.
Pestic Biochem Physiol ; 199: 105804, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458671

RESUMEN

Chemical fertilizer and pesticide are necessary in agriculture, which have been frequently used, sometimes even at the same time or in combination. To understand the interactions of them could be of significance for better use of these agrochemicals. In this study, the influence of chemical fertilizers (urea, potassium sulfate, ammonium sulfate and superphosphate) on the control efficacy and environmental behavior of abamectin was investigated, which could be applied in soil for controlling nematodes. In laboratory assays, ammonium sulfate at 1 and 2 g/L decreased the LC50 values of abamectin to Meloidogyne incognita from 0.17 mg/L to 0.081 and 0.043 mg/L, indicating it could increase the contact toxicity. In greenhouse trial, ammonium sulfate at 1000 mg/kg increased the control efficacy of abamectin by 1.37 times. Meanwhile, the combination of abamectin with ammonium sulfate could also promote the tomato seedling growth as well as the defense-related enzyme activity under M. incognita stress. The persistence and mobility of abamectin in soil were significantly elevated by ammonium sulfate, which could prolong and promote the control efficacy against nematodes. These results could provide reference for reasonable use of abamectin and fertilizers so as to increase the control efficacy and minimize the environmental risks.


Asunto(s)
Fertilizantes , Ivermectina/análogos & derivados , Tylenchoidea , Animales , Suelo , Sulfato de Amonio
17.
New Phytol ; 242(1): 262-277, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38332248

RESUMEN

Plants are simultaneously attacked by different pests that rely on sugars uptake from plants. An understanding of the role of plant sugar allocation in these multipartite interactions is limited. Here, we characterized the expression patterns of sucrose transporter genes and evaluated the impact of targeted transporter gene mutants and brown planthopper (BPH) phloem-feeding and oviposition on root sugar allocation and BPH-reduced rice susceptibility to Meloidogyne graminicola. We found that the sugar transporter genes OsSUT1 and OsSUT2 are induced at BPH oviposition sites. OsSUT2 mutants showed a higher resistance to gravid BPH than to nymph BPH, and this was correlated with callose deposition, as reflected in a different effect on M. graminicola infection. BPH phloem-feeding caused inhibition of callose deposition that was counteracted by BPH oviposition. Meanwhile, this pivotal role of sugar allocation in BPH-reduced rice susceptibility to M. graminicola was validated on rice cultivar RHT harbouring BPH resistance genes Bph3 and Bph17. In conclusion, we demonstrated that rice susceptibility to M. graminicola is regulated by BPH phloem-feeding and oviposition on rice through differences in plant sugar allocation.


Asunto(s)
Hemípteros , Oryza , Tylenchoidea , Animales , Femenino , Hemípteros/fisiología , Azúcares/metabolismo , Oryza/metabolismo
18.
Microbiol Res ; 282: 127638, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38422858

RESUMEN

The plant-parasitic root-knot nematode Meloidogyne exigua causes significant damage and is an important threat in Coffea arabica plantations. The utilization of plant-beneficial microbes as biological control agents against sedentary endoparasitic nematodes has been a longstanding strategy. However, their application in field conditions to control root-knot nematodes and their interaction with the rhizospheric microbiota of coffee plants remain largely unexplored. This study aimed to investigate the effects of biological control agent-based bioproducts and a chemical nematicide, used in various combinations, on the control of root-knot nematodes and the profiling of the coffee plant rhizomicrobiome in a field trial. The commercially available biological products, including Trichoderma asperellum URM 5911 (Quality), Bacillus subtilis UFPEDA 764 (Rizos), Bacillus methylotrophicus UFPEDA 20 (Onix), and nematicide Cadusafos (Rugby), were applied to adult coffee plants. The population of second-stage juveniles (J2) and eggs, as well as plant yield, were evaluated over three consecutive years. However, no significant differences were observed between the control group and the groups treated with bioproducts and the nematicide. Furthermore, the diversity and community composition of bacteria, fungi, and eukaryotes in the rhizosphere soil of bioproduct-treated plants were evaluated. The dominant phyla identified in the 16 S, ITS2, and 18 S communities included Proteobacteria, Acidobacteria, Actinobacteria, Ascomycota, Mortierellomycota, and Cercozoa in both consecutive years. There were no significant differences detected in the Shannon diversity of 16 S, ITS2, and 18 S communities between the years of data. The application of a combination of T. asperellum, B. subtilis, and B. methylotrophicus, as well as the use of Cadusafos alone and in combination with T. asperellum, B. subtilis, and B. methylotrophicus, resulted in a significant reduction (26.08%, 39.13%, and 21.73%, respectively) in the relative abundance of Fusarium spp. Moreover, the relative abundance of Trichoderma spp. significantly increased by 500%, 200%, and 100% at the genus level, respectively, compared to the control treatment. By constructing a co-occurrence network, we discovered a complex network structure among the species in all the bioproduct-treated groups. However, our findings indicate that the introduction of exogenous beneficial microbes into field conditions was unable to modulate the existing microbiota significantly. These findings suggest that the applied bioproducts had no significant impact on the reshaping of the overall microbial diversity in the rhizosphere microbiome but rather recruited selected microrganisms and assured net return to the grower. The results underscore the intricate nature of the rhizosphere microbiome and suggest the necessity for alternate biocontrol strategies and a re-evaluation of agricultural practices to improve nematode control by aligning with the complex ecological interactions in the rhizosphere.


Asunto(s)
Coffea , Compuestos Organotiofosforados , Tylenchoidea , Animales , Café , Suelo/química , Microbiología del Suelo , Bacterias/genética , Antinematodos , Coffea/microbiología , Rizosfera , Agentes de Control Biológico
19.
Plant Cell Environ ; 47(5): 1732-1746, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311858

RESUMEN

The root-knot nematode Meloidogyne graminicola secretes effectors into rice tissues to modulate host immunity. Here, we characterised MgCRT1, a calreticulin protein of M. graminicola, and identified its target in the plant. In situ hybridisation showed MgCRT1 mRNA accumulating in the subventral oesophageal gland in J2 nematodes. Immunolocalization indicated MgCRT1 localises in the giant cells during parasitism. Host-induced gene silencing of MgCRT1 reduced the infection ability of M. graminicola, while over-expressing MgCRT1 enhanced rice susceptibility to M. graminicola. A yeast two-hybrid approach identified the calmodulin-like protein OsCML31 as an interactor of MgCRT1. OsCML31 interacts with the high mobility group protein OsHMGB1 which is a conserved DNA binding protein. Knockout of OsCML31 or overexpression of OsHMGB1 in rice results in enhanced susceptibility to M. graminicola. In contrast, overexpression of OsCML31 or knockout of OsHMGB1 in rice decreases susceptibility to M. graminicola. The GST-pulldown and luciferase complementation imaging assay showed that MgCRT1 decreases the interaction of OsCML31 and OsHMGB1 in a competitive manner. In conclusion, when M. graminicola infects rice and secretes MgCRT1 into rice, MgCRT1 interacts with OsCML31 and decreases the association of OsCML31 with OsHMGB1, resulting in the release of OsHMGB1 to enhance rice susceptibility.


Asunto(s)
Oryza , Tylenchoidea , Animales , Enfermedades de las Plantas , Calmodulina/metabolismo , Oryza/metabolismo , Calreticulina/genética
20.
Nat Commun ; 15(1): 773, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316773

RESUMEN

Using long-read sequencing, we assembled and unzipped the polyploid genomes of Meloidogyne incognita, M. javanica and M. arenaria, three of the most devastating plant-parasitic nematodes. We found the canonical nematode telomeric repeat to be missing in these and other Meloidogyne genomes. In addition, we find no evidence for the enzyme telomerase or for orthologs of C. elegans telomere-associated proteins, suggesting alternative lengthening of telomeres. Instead, analyzing our assembled genomes, we identify species-specific composite repeats enriched mostly at one extremity of contigs. These repeats are G-rich, oriented, and transcribed, similarly to canonical telomeric repeats. We confirm them as telomeric using fluorescent in situ hybridization. These repeats are mostly found at one single end of chromosomes in these species. The discovery of unusual and specific complex telomeric repeats opens a plethora of perspectives and highlights the evolutionary diversity of telomeres despite their central roles in senescence, aging, and chromosome integrity.


Asunto(s)
Tylenchida , Tylenchoidea , Animales , Caenorhabditis elegans/genética , Hibridación Fluorescente in Situ , Tylenchoidea/genética , Telómero/genética , Poliploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...